作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
为了实现光学系统的集成和小型化,提高光学系统的成像质量,设计了一种基于广义斯涅尔定律和几何相位的平面超透镜。通过在超透镜界面处设计双曲面相位分布,将入射圆偏振平面波阵面转换为球形波阵面,将光聚焦在期望焦距处,并且在垂直入射时能够实现衍射极限聚焦。分析了入射光以不同角度入射时,光斑的调制传递函数(MTF)曲线,阐述了不同角度入射光入射时导致MTF曲线下降的原因。该分析对平面超透镜的进一步优化设计具有一定的指导意义,有助于实现小型化、集成化的光学系统。
超透镜 斜入射 调制传递函数(MTF) metalens oblique incidence modulation transfer function 
光学仪器
2020, 42(1): 52
Binbin Yu 1†Jing Wen 1,4,*†Lei Chen 1Leihong Zhang 1[ ... ]Dawei Zhang 1,3,5,*
Author Affiliations
Abstract
1 Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
3 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
4 e-mail: jwen@usst.edu.cn
5 e-mail: dwzhang@usst.edu.cn
Airy optical beams have emerged to hold enormous theoretical and experimental research interest due to their outstanding characteristics. Conventional approaches suffer from bulky and costly systems, as well as poor phase discretization. The newly developed metasurface-based Airy beam generators have constraints of polarization dependence or limited generation efficiency. Here, we experimentally demonstrate a polarization-independent silicon dielectric metasurface for generation of high-efficiency Airy optical beams. In our implementation, rather than synchronous manipulation of the amplitude and phase by plasmonic or Huygens’ metasurfaces, we employ and impose a 3/2 phase-only manipulation to the dielectric metasurface, consisting of an array of silicon nanopillars with an optimized transmission efficiency as high as 97%. The resultant Airy optical beams possess extraordinarily large deflection angles and relatively narrow beam widths. Our validated scheme will open up a fascinating doorway to broaden the application scenarios of Airy optical beams on ultracompact photonic platforms.
Photonics Research
2020, 8(7): 07001148

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!